

Reg. No.: 22BEC1022

Final Assessment Test (FAT) - January/February 2023

Programme	B.Tech.	Semester	Fall Semester 2022-23
Course Title	CALCULUS	Course Code	BMAT101L
Faculty Name	Prof. Manoj Kumar Singh	Slot	B1+TB1
		Class Nbr	СН2022231700260
Time	3 Hours	Max. Marks	100

Part A (10 X 10 Marks)

Answer any 10 questions

- 1. Find the area between the circle $x^2 + y^2 = 2ax$ and parabola $y^2 = ax$. [10]
- 2. (a) If 0 < a < b < 1, then prove that, $\frac{(b-a)}{1+b^2} < \tan^{-1}b \tan^{-1}a < \frac{(b-a)}{1+a^2}$, hence show that $\frac{\pi}{4} + \frac{3}{25} < \tan^{-1}\left(\frac{4}{3}\right) < \frac{\pi}{4} + \frac{1}{6}$. (5 Marks)
 - (b) Find $\frac{\partial z}{\partial x}$, if $yz \ln z = x + y$, where z is a function of two independent variables x & y and prove that the partial derivative exists. (5 Marks)
- 3. Show that the function defined by $f(x,y) = \begin{cases} \frac{2xy}{x^2+y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$ is continuous at every point except the origin.
- 4. Find the points on the surface $x^2 zy = 4$ closest to the origin. [10]
- 5. (a) Using Taylor's Formula for f(x, y) at the origin, find the cubic approximation of $f(x, y) = \frac{1}{1 x y}$. (5 Marks)
 - (b) Evaluate $\int_0^\infty \frac{x^a}{a^x} dx$ (a > 0). (5 Marks)
- 6. (a) Find the value of integral $I = \int_0^8 \int_{y^{\frac{1}{3}}}^2 \sqrt{x^4 + 1} \, dx \, dy$ by changing the order of integration. [10] (5 Marks)
 - (b) Find the volume of the solid region bounded by the paraboloid $az = x^2 + y^2$ and cylinder $x^2 + y^2 = b^2$. (5 Marks)
- 7. Evaluate $\int_{0}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{-(x^{2}+y^{2})}^{(x^{2}+y^{2})} 21xy^{2}dz dy dx.$ [10]
- 8. (a) Obtain the area of the ellipse with semi-major axis a and semi-minor axis as b respectively using gamma function. (4 Marks)
 - (b) Evaluate the Dirichlet integral $\int \int \int_D x^{l-1} y^{m-1} z^{n-1} dx dy dz$, where D is the region bounded by the first octant and $\left(\frac{x}{a}\right)^p + \left(\frac{y}{b}\right)^q + \left(\frac{z}{c}\right)^r \le 1$. (6 Marks)
- 9. (a) Find the divergence of $r^n \vec{r}$, where $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ and $r = |\vec{r}|$. Also find the value of n for which $r^n \vec{r}$ is a solenoidal field. (4 Marks)
 - (b) Find the directional derivative of the scalar field $\phi = x^3 5x^2y z$ at P(1,1,1) in the direction of the line $\frac{x-1}{2} = \frac{y+1}{-2} = z$. In what directions does ϕ changes most rapidly at P and what are the rates of change in these directions. (6 Marks)
- 10. Prove the following vector identities

- (a) $div(curl(\vec{F})) = 0$ (3 Marks)
- (b) $\nabla^2 f(r) = f''(r) + \frac{2}{r} f'(r)$ where $\vec{r} = x \vec{i} + y \vec{j} + z \vec{k}$ and $r = |\vec{r}|$. (7 Marks)
- 11. (a) Using Green's Theorem evaluate $\oint_C \left[(2xy x^2)dx + (x^2 + y^2)dy \right]$ where C is the closed curve of the region bounded by $y = x^2$ and $y^2 = x$. (5 Marks)
 - (b) If $\vec{F} = \left(4xy 3x^2z^2\right)\vec{i} + 2x^2\vec{j} 2x^3z\vec{k}$, check whether the integral $\oint_C \vec{F} \cdot \vec{dr}$ is

independent of the path C. (5 Marks)

12. Verify Stoke's theorem for the vector field $\vec{F} = (2x - y)\vec{i} - yz^2\vec{j} - y^2z\vec{k}$ over the upper half surface $x^2 + y^2 + z^2 = 1$, bounded by its projections on the xy-plane. [10]

(- X- X- X- X